
DIPOLE TRANSITION INTEGFALS FOR NON-METAL RESONANCE TRANSITIONS 

G. M. LAWRENCE 
Princeton University Observatory 

Princet.on, New Jersey 

GPO PRICE S 

CFSTl PRICE(S) S 
April 20, 1966 

Hard copy (HC) ,/,/.ro 

Microfiche (MF) /& 

ff 863 July 85 

-.- __ ABSTRACT 

By formulating a numerical analog of the Bates-Damgaard Coulomb approxi- 

mation for dipole transition probabilities, but with a Thomas-Fermi potential, 

trwsition probabilities are calculated for p - p - s transitions as a 
function of empirical energies. 

n n-1 

The variation of the calculated values with 

atomic number is foyhd to be approximately factorable. The formulation obtains 

radial wavefunctions by solution of an initial value problem. 

the Bates-Damgaard tables are given for p ground states and s excited states of 

Extension of 

neutral atoms. The scaled Thomas-Fermi or quantum defect methods are recommended 

for ions. 

within 3@. 

of the configuration assignments is the probable cause. 

For intermediate weight atoms, agreement with experiment is found 

Errors of 40% or more are found in C, N, Pb, and I, where failure 

The Burgess-Seaton 

quantum defect method is found to give results - lo$ + 80% different from the 

present formulation. 
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I INTRODUCTION 

We present here a simple numerical formulation of t he  " rad ia l  integral" 

evaluation fo r  atomic dipole t ransi t ions with one-electron jumps. 

of Bates and Damgaard (1949), (ED), which uses a Coulomb poten t ia l  f o r  the  

cent ra l  f i e ld ,  is, i n  essence, duplicated except t h a t  a Thomas-Fermi (TF) 

po ten t ia l  i s  used. W e  s h a l l  formulate Che extension and then mention i t s  

r e l a t ion  t o  the  scaled Thomas-Fermi (STF) method of Stewart and Rotenberg 

( 1965), self-consistent f i e l d  calculations, and experiment. 

The method 

The present formulation is  motivated by a desire  t o  extrapolate the BD 
n tab les  f o r  use with the resonance-type t rans i t ions  (mp 

of non-metals. 

have made such extrapolations. 

method of Burgess and Seaton ( 1960) t o  modify the  BD method. 

important improvement and is  described i n  section V. 

calculations given here are fo r  the resonance t rans i t ions  i n  neu%ral atoms. 

Extension of t h e  tab les  t o  ions is  discussed in section IX. 

- mpn" (m + l ) d  ) 

For example, G r i e m  (1964) and Kelly and Armstrong (1  962) 

The l a t t e r  authors used the  quantum defect 

This is  an 

The tab les  and specif ic  

Oup goal for  the accuracy of such a formulation i s  1 i n  reproducing 

other one-electron type calculations f o r  resonance type t rans i t ions .  Core 

changes, configuration mixing, spin o r b i t  interaction, e tc .  are p a r t i a l l y  o r  

ccnrrpletely ignored i n  such a formulation. 

some experimental values. 

of f ac to r s  of two t o  three i n  C and N but only factors  of 1.3 or l e s s  f o r  

intermediaie weight e ieei i ts .  

Table 5 gives a comparison with 

We f ind  discrepancies between theory and experiment 

The important pa r t s  of the  BD theory which a re  retained i n  t h i s  extension 

axe: 
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1. The r ad ia l  wavefunctions a t  large r are Coulombic (except f o r  

normalization) and are determined by the experimental energies. 

of t h e  wave functions at  small p are ignored, and indeed, a re  ignorable. 

Inaccuracies 

2 .  The results are presented i n  such a way t h a t  interpolat ion is  possible. 

The BD format is used. 

3. A single potential ,  asymptotically C o u l o a i c ,  is used fo r  en t r ies  

i n  t h e  tables  of t h e  extended BD func t ion ,d .  

The important differences are: 

1. The potent ia l  used i s  a numerical approximation t o  the TF potential ,  

with an exchange approximation, as  given by Lat ter  (1955). 

is  Coulombic a t  large out drops f a s t e r  than 1 /P a t  small r . The 

This potent ia l  

universal  m c t i o n " j  Latter's equations (5 )  and ( 9 )  are  used. 11 

2. The atomic number 2 enters  t h e  calculation through i ts  appearance 
F are mainly on the  BD function & . i n  t h e  potent ia l ,  but i t s  e f fec ts  

3. Divergences of t h e  wavefunctions f o r  )' <.001 are  eliminated by 

the  numerical method used. 

11. THEORY AND COMPUTATION 

The formulation is  a numerical solution of the  one-electron cent ra l  f i e l d  

problem defined by the  radial. Schroedinger equation: 

where C is  the  core charge, p = C?f with the radius i n  Bohr radi i ,  

is the  o rb i t a l  angular momentum, V ( r ) t h e  cent ra l  po ten t ia l  and 1 t 
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is  the  effect ive quantum number defined i n  terms of the  empirical ene rgy4  

2 2  
( i n  Rydbergs) by 5 = C /r. Set C = 1 .  We wish t o  calculate  Q or 

I where, 

where 1, is  the  l a rges t  of the angular momenta of t he  jumping electron i n  

the  t r ans i t i on .  

Shore and Menzel ( 1965). Here, i m  = fr . The normalization 

The quantity a- is  used i n  BD and I i s  the quantity used by 

7 

factors ,  N , are given by: f 

I n  order t o  obtain P func t ims  which are correct  a t  la rge  r we write 

which requires Chat F satlscy 

The asymptotic form of F is taken from BD: 
CD 

T 
where 

The numerical solut ion of the rad ia l  wave equation was accomplished by 

stepwise integrat ion of  Eq. 5, s ta r t ing  at  Po 

!' = .001 with AP = -0.05. The i n i t i a l  conditions were F ( ) = 1.0 

, ? - . < ,  F' (38.001) = -al/ 

= 38.001 and stopping at  

1 A Runge-Kutte method by G i l l  (1951 ) w a s  used. . 2 

7 .  B u i l t  i n to  the  Princeton, IBM 7094, computer system. This f a c i l i t y  is 

supported i n  part by National Science Foundation G r a n t  NSF-GP579. 
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I n  t h e  range of values included here, the  s tep  s ize ,  s t a r t i ng  radius and 

i n i t i a l  slope condition were determined t o  be appropriate t o  give u-' values 

within 1% of thoee given by exact solutions of the equations. 

i s  l imited t o  s m a l l 7  

i s  s e t  = 1 a n d 7  an integer,  t he  proper normalized hydrogenic P functions are 

obtained within 0,001. 

Such a formulation 

values because of s t a r t i ng  radius l imitat ions.  If Z 

The t r u e  solution t o  the  problem defined above w i l l ,  i n  general, diverge 

a t  the or igin because the  e x p e r i n e n t a y  determined 7 values a re  not eigen 

values of the approximate poten t ia l  used. 

i n  F ( r  ) f o r  r< 0.1 but t h e r  

For a typ ica l  resonance t r ans i t i on  as l i s t e d  i n  Table 5, we f ind  

This divergence i s  found t o  begin 

fac tor  i n  Bq. 4 makes i t s  e f f ec t  qui te  small. 
fJ ;t/ 

2% increase 

/L i n  the calculated values of if the vave f'uncticns are a r b i t r a r i l y  

truncated shortwards of P = 0.1. 

upon cut  -off radius. 

%us t h e  solution is  not strongly dependent 

The poten t ia l  used is  accuradx enough ii-iat solutions f o r  t h e  t r m s i t i o n  

arrays;of Table 5 have the  proper number of nodes except fo r  the misbehavior 

a t  the  origin.  

111. PRESliWIlTION OF TBE DATA 

Tables 3 and 4 are arranged as extensions of the BD tables fo r  O . 5 e y  

/< 2.0 and+< 2.8. We obtain 0- from 
P 

where i 

Now s t r i c t l y  speaking ,d .  i s  a function of Z but was found t o  vary only by 

f .O3 for Z between 7 and 33. A "medium" value of Z = 1 5 w a s  chosen. Hence, 
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one interpolates between Z values only i n  finding . lnterpolat ion of 

i s  best done l i nea r ly  while & varies approximately exponentially with P- 

7 p. 
graphs of I n  $ vs 7 and of vs ( -* ) . A cmparison with the 

d i r ec t ly  calculated values i n  column 6 shows that the  e r ror  involved i n  taking 

The specif ic  examples i n  column 5 of Table 5 were interpolated from 

P 

t$ =& (Z = 15) is not serious. 

IV. VARIATION WITH THE POTENTIAL 

W e  ask now, how cruc ia l  i s  the  choise of potent ia l?  The value of Z i s  

a convenient parameter fo r  varying the potent ia l .  

of the var ia t ion  i n  the  calculated value of is isolated i n  t h e  function 

Examination of the  en t r i e s  shows 

A s  pointed out above, most 

which is  tabulated i n  Table 3. q (4 
t h a t  a t  Z r 2 6 ,  

1 ,  1.5, and 2, respectively.  

we f ind i n  going from Z = 15 t o  Z = 82 that 

p wave function has gained approximately 3 nodes. A t  Z = 7, however, is  some- 

what more sens i t ive  t o  Z.  

d I n  (T /d  ~n Z = 0.26, 0.21, 0.10 and 0.02 f o r  Vp = 0.75, 

As a rather d ra s t i c  example, i f  we use v p  = 1 ,  

has increased only 34% while t h e  

L e t  us examine the source of the var ia t ion with Z. The TF poten t ia l  is 

non-Coulombic only fo r  k < l  s o  t h a t  changes i n  P ( rJ ) occur only f o r  

r?  1 .  The r factor  i n  Eq. ( 2 )  thus prac t ica l ly  eliminates changes i n  

the  radial in tegra l  with Z.  

fac tors ,  N 1 

Ns, and N 

E 

t he  po ten t i a l  is  1 / r . The re la t ive ly  strong variation i n  N occurs bemuse 

P is  localized near r = 1 .  A s  Z increases t h e  poten t ia l  steepens, causing 

the  electron t o  spend l e s s  time a t  small r . Since t h e  un-normalized wave- 

This leaves t h e  var ia t ion i n  the  normalization 

. Table 1 i l l u s t r a t e s  t h e  var ia t ion with Z of the r ad ia l  integral ,  

of Eq. ( 2 )  f o r  energies appropriate t o  the 2p - 3s t r ans i t i on  i n  N I. 
P 

does cot T~zry ~ x c h  heczixe the Deak of t h e  s-orbi ta l  occurs a t  = 4.2 where 
S 

P 

P 
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functions are Z-independent at  large p , the  normalization fac tor  N decreases, 

thus increasing the  calculated value of CT . 
I, 

2 

For the  specif ic  cases t rea ted  i n  Table 5 ,  a change i n  Z of only oze or 

two 88s suf f ic ien t  t o  cause convergence a t  the origin.  From t h i s  study, a 

rough limit of 5% can be set  on the error due t o  ignoring the  p a r t i a l  divergence 

.% a t  the origin.  

V. VARIATION WITH ENERGY 

The effect ive quantum numbers, /p, of the  non-metal ground states 

vary from 

dealing with something l i k e  ag"lp" Coulomb function - which diverges strongly 

0.8 t o  a 1.4 s o  that i n  using a Coulomb poten t ia l  one i s  

a t  the  or igin.  This divergence appears as a factor,  r (7-1 L in the 

normalization fac tor  Np inherent i n  BD. 

$ = /I 
nnLy tc? r = .On1 eliminates t h i s  divergence. The use of t h e  appropriate Z 

i n  t h e  Thomas-Fermi poten t ia l  then gives more nearly correct  absolute values. 

Except f o r  the  non-zero b a t  

t o  the BD tables. 

The la rge  normalization fac tor  near 

2 causes an incorrect ly  s m a l l  Q- . The use of t he  numerical integrat ion 

/p = 1 ,  Tables 3 and 4 are qua l i ta t ive ly  s imilar  

VI. OTHER METHODS 

Burgess and Seaton ( 1 9 6 0 ) ~  i n  the process of developing t h e i r  quantum 

defect  method, i n  e f f ec t  proposed an extended %( 9 ) f'unction.good fo r  all Z. 

The dependence on Z i s  eliminated through the  approximate dependence of Y'p on Z. 

They proposed t h a t  the  BD normalization factor ,  e , be multiplied by (7 - 1 j 

(-t/+ 2 )  / (Y2 +p) f o r  ripq configurations. 

the observation t h a t  t h e  extrapolated quantum defect, /' = n -7, i s  a nearly 

I 

n 

, P 
This fac tor  is  derived from 



l i nea r  Function of E between 

the  value of a t  161 = 1 i s  n - 1 .  Using t h i s  renormalization, we obtain 

a modified form of the  BD function %( v’p): 

/e/  = 1 and t h e  ground state energy, and t h a t  

Some points of t h i s  flmction are tabulated under Q,D i n  Table 4 and corresponding 

* values are l i s t e d  i n  Table 5 under U ( Q  D ) .  The values of % ( v p )  2 

90 
are generally 1 0 - 3 6  l a rger  than the  corresponding $( /p, Z)  values tbugh 

the  major var ia t ion from high t o  low Z i s  followed. 

Scaled Thomas-Fermi p o t e n t i d s  have been used by Stewart and Rotenberg 

(1965). They solve t h e  r ad ia l  equation (3 )  as the  usual boundary value, eigen 

value problem, adjusting t h e  r ad ia l  scale of the  Thomas-Fermi poten t ia l  u n t i l  

t he  eigen value matches t h e  experimental energy. A TF potent ia l  somewhat more 

physical than Latter’s i s  used. 

t h i s  STF method will give similar results i n  s o  far as t h e i r  numerical solution 

Because of the  smal l  e f fec t  of changes i n  Z, 

(Numerov’s method) i s  “accurateii a t  large j“ . Tnat is, consistent wTltii the  

energy and asymptotic potent ia l .  

Similarly, self-consistent f i e l d  calculations will give the  same answers 

(approximately) i f  t h e  calculated energies are near the  experimental ones, 

and i f  t he  wavefunctims are approximated so as t o  be accurate a t  la rge  r . 

V I I .  CHOICE OF EXPERlMENTAL ENERGIEE 
2 / 

One can formally obtain r for t rans i t ion  arrays ( n l  - n’& ) or 

fo r  mul t ip le t s  ( f - 1, ’ )  by putting i n  appropriate energies. 

For an en t i r e  t r ans i t i on  array, one averages t h e  energies of the  terms 

i n  a configuration, weighting by s t a t i s t i c a l  weight. The ionization energy i s  

t h e  average of t he  ground state terms of t he  core. These averages remove ( t o  
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I 

1st order i n  perturbation theory) t h e  perturbations due t o  e l ec t ros t a t i c  and 

spin o rb i t  interact ion.  

For individual mult iplets  we can attempt t o  use the  philosophy inherent 

i n  the  Chicago SCF program of Roothaan and Bagus ( 1963). 

l e t  us ca lcu la te  the  energy of a term, var ia t ional ly ,  by finding the  "best" 

They say, i n  e f fec t ,  

radial wavefunctions consistent with the cent ra l  f i e l d  angular f'unctions 

appropriate t o  the  term. So, then, l e t  us f ind  the r ad ia l  wavef'unction con- 

sis-l;ent with the  energy of the term and i ts  1 value. 

- - 

However, i n  t he  more complex spectra w e  have d i f f i c u l t y  identifying the 

unique ionizat ion l i m i t  f o r  our  "equivalent" one-electron cent ra l  f i e l d  problem. 

Let us use 

a possible solution. The p term has three (parent  + 2p) ion terms, S, 

1 

a term of the  N I  ground s t a t e  t o  show the  problem and i l l u s t r a t e  

2 1 

D, and %'. We can express the  expectation value of t he  ion l i m i t  energy by 

where t h e  weighting fac tors  a re  squared coeff ic ients  oT Iraciional p a a i t w e  
h 

as given, fo r  example, by Racah (1943). 

i n  t h e  2p3 = 2p 3 s t r ans i t i on  array of N I  obtained i n  t h i s  fashion. 

Table 2 l i s ts  rz fo r  multiplets 

These 2 

2 
Lf values are compared with the  values obtained by Kelly (1964) using 

t h e  much more complicated Chicago SCF program of Roothaan and Bagus  ( 1  963). 

-act agreement i s  not obtained though the general trend dam the column i s  

followed . 
However, experimental values obtained from the a r c  in tens i ty  measurements 

of Labuhn (1965), assuming pure configurations, disagree by fac tors  of one 

t o  th ree .  Indeed, calculat ing individual W values f o r  each multiplet  

worsens the agreement. 

r a d i a t i v e  l i fe t ime determinations of Lawrence and Savage ( 1966) . 
Labuhn's measurements have received support from the  

Analytical 
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self-consistent f i e l d  calculations with extensive configuration mixing 

made f o r  these t rans i t ions  by Weiss (1966) give better agreement with experi- 

ment. 

individual multiplets w i l l  give be t te r  transiticjn probabi l i t i es  than a calcula- 

t i o n  f o r  t h e  en t i re  array.  

Thus, one cannot expect - a-priori  t h a t  cen t ra l  f i e l d  Calculations f o r  

V I I .  COMPARISON WITH EXPERIMEXT 

( m +  I )  s n n-1 - mp 

t r ans i t i on  arrays of most of t h e  neutral  nor,-metals, excluding t h e  i n e r t  

gases. The effect ive quantum numbers @ and It/ are  obtained from the  

average energies, estimating the  posit ion of a f e w  unobserved terms. 

Table 5 gives specif ic  calculations f o r  the  mp 

P 
The 

2 energies are taken from Moore (1949-58). Values of CT obtained both from 

Eq. 8 and f rm d i rec t  calculation with t h e  correct Z are l i s ted .  

2 The !!experimental" values of l~ * l i s t e d  under w ( I C )  are mostly 

derived from radiat ive l i f e t i m e  measurements and are  discussed by LaWi=eiice (1967). 

The necessary branching r a t i o s  and angular factors  were calculated using in t e r -  

mediate coupling theory. The experbenta l  values of C are  generally 2 

based on only one or two measurements. 

can be considered accurate t o  f 20% except i n  cases such as C and N and I where 

The data  suggest that these values 

2 configuration mixing makes such values of W meaningless within factors  of 

two or three.  

2 The last column i n  Table 5 gives the  r a t i o  of U- ( Z )  t o  the  experimental 

value. 

IX. EXTENSION TO IONS 

2 Values of V f o r  the  2p - 3s t rans i t ions  of 011, 0111, I V Y  NII, and 

N I I I  w e r e  calculated, using Tables 3 and 4 and Eq. (8) with (#l . 
state effect ive quantum numbers, ?Jp, range from 1 .3 t o  1 .7. 

The ground 

The d ' s  were 
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compared w i t h  t he  corresponding values given i n  Table V of SW. 

values were within 20$ of the  extrapolated BD given i n  STF and thus approximately 

a factor  of t w o  lower than the STF values. 

The present 

This reproduction of the  BD values can be explained i n  terms of the  

poten t ia l  implicit  i n  t he  use of Eq. (8) .  

Eq. (8) implies an ion poten t ia l  % (r)=c qF (rc) 
v, ( )* 

t i o n  of VI ( r ) and canparison with the  ion potent ia ls  of STF shows t h a t  

although it i s  asymptotically correct, t he  scale of the  screening is asproximatdy 

a fac tor  C too small. 

radius f o r  t he  BD formulation. 

It can be shown from Eq. (3) t h a t  
2 

; where 

) is  La t t e r ' s  potent ia l  as used i n  the numerical solution. Exmina- 

Thus the potential  serves la rge ly  t o  provide a small  cut-off 

A more correct TF poten t ia l  f o r  use i n  Eq. (3) ,  with screening fur ther  

out, could be obtained from GombAs (1949) or from STF. 

Will increase the calculated values of  . The numerical calculations required 

aiie not done here. 

The additional screening 

2 

The ground s t a t e  quantum defects are closer t o  t h e i r  asymptotic value 

i n  ions than neutrals  so  t h a t  the  quantum defect method would be expected t o  

give more accurate r e s u l t s  f o r  ions. 

f o r  t h e  corresponding calculations i n  ions. 

Thus Eq. 9, Eq. 8 and Table 3 can be used 
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RADIAL INTEGRAL AMD NORMALIZATION FACTORS FOR N I  

vs. z. Yp = I .015; = 1.79. 
S - 

NS NP Z I.’:. 
1 1.235 1 .a9 3.22 
7 1 -378 1.868 1.034 

15 1.382 1 .a65 0.7314 

33 1.318 1 -857 0.5608 
51 1.266 1 .a49 0.4847 

\ 82 1.202 1 *a37 0.4374 
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TABLE 2 

VALUES OF w FOR N I 

1200 4s 4P 0.967 i .795 0.132 0.131~ 0.230 0.34 
1 495 % 2p i .018 1.875 .138 1 5ga .240 .26 
1243 5 2D 1.018 1.823 .168 .I 68" - 303 .18 
1742 ?P 2p 1.047 1-875 -1'14 .18Ta .304 .26 
1412 ?P 2D 1.047. 1.823 .230 .198& .404 0.20 
- Entire array 1.015 1.79 0.208 O.19Tb 0.360 

a. Kelly ( 1964) SCF 
b. 

c. 
Stewart and Rotenberg (1966; STF 

From Labuhn ( 1965) Arc, multiplied by 0.75 as recommended by Lawrence and 
Savage ( 1966). 



0-5 0.75 1 .o 1-5 2.0 6 
0 1 .o 1 .o 1 .o 1 .o 1 .o 

0.2 0 448  0.988 1.001 1 .o 0.968 

0.4 0.784 0.895 0.928 0.899 0.837 
0.6 0,593 0.7’45 0.779 0.701 0.636 

1 .o 0,223 0.329 0.306 0.191 0.176 
1.2 0.065 0.108 0.062 -0.017 

-0.1 21 -0.171 -0.206 -0.191 1.6 
1.8 -0.129 -0.189 -0.205 

0.8 0.403 0.551 0.565 0.447 0.402 

1.4 -0.055 -0.069 -0.117 -0.147 

BD 

1 .o 
0.967 
0.842 
0.&3 

0.181 
0.409 
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0.5 

0.75 
1 .o 
1 *5 
2.0 

TABLE 4 

0.291 - 0.063 0.195 0.470 0.606 0.670 0.739 
0.596 - 0.143 0.461 0.717 0.880 0.956 1.031 
1 .o 0 0.264 0.745 0.976 1.15 1.23 1.31 
2.12 1.45 0.866 1.54 1.69 1.83 1.90 1-97 
3.68 3 3 .oo 3.03 3.07 3.12 3.14 3.17 

QD 1 7 15 33 51 82 

I I 



TABLE 5 

S P E C I F I C  CALCULATIONS COMF'AFED WITH EXPERIMENT 

C 

si 
G e  

Sn 
Pb 

N 
P 
PA s 

Sb 

Od 
S 
Se 

F 

01 

B r  

I 

1.91 
2.065 
2.06 
2.12 

2.07 

1.79 
1.85 
1 *97 
2.02 

1.76 
1.80 

I .81 

1.97 
1.84 
1.90 

1.87 

1.13 

1.32 
1-35 
7 -39 
1 .41 

1.015 
1.16 
1.22 

1.27 

0-93 
1.08 
1.12 

0.881 
0.996 
0 0994 
1 .lo1 

929 0.15 0.170 
90 0.58 -- 0 583 

1.16 
1.22 

1.74 

.36 

0.71 
0.80 

0.68 

0.21 

0.55 
0.64 

0.06 

0.24 
0.1 7 
0.52 

0.88 
0.96 
1.52 

0.21 

0.57 
0.66 
0.80 

0.12 

0.48 
0.74 

0.04 

0.24 
0.23 
0.70 

1.03 
1.17 
1.76 

0.170 
0.603 
0.780 
0.977 

0.127 
0.494 
0.842 

0.016 
0.266 

0,758 
0.407 

0.362~ 0.47 
0 . 6 5 ~  0.90 
0. 8Oa 1.29 
1 .la 1.07 
1 . 2 5 ~  1.4 

Table 2 0.36 
0. 60a 1 .o 

0.1 15' 
0.50" 

- 
0.202" 
- 

0.40" 

1.10 

0.99 

1-33 

a. 

b. 1656~,  = 3.1 nsec ., Lawrence and Savage ( 1966). 
cf - 
d. STF gives W = 0.137. 

Intermediate coupling + l ifetimes,  Lawrence ( 1967) . 

from 1302 1: 7' = 2.4 nsec., Savage and Lawrence (1967). 
2 


